Abstract

This paper proposes the design of fractional order (FO) Butterworth filter in complex w-plane (w=sq; q being any real number) considering the presence of under-damped, hyper-damped, ultra-damped poles. This is the first attempt to design such fractional Butterworth filters in complex w-plane instead of complex s-plane, as conventionally done for integer order filters. First, the concept of fractional derivatives and w-plane stability of linear fractional order systems are discussed. Detailed mathematical formulation for the design of fractional Butterworth-like filter (FBWF) in w-plane is then presented. Simulation examples are given along with a practical example to design the FO Butterworth filter with given specifications in frequency domain to show the practicability of the proposed formulation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.