Abstract
• We state and prove a generalization of Young’s inequality to the complex plane. • We derive the Beta divergence for complex-valued scalars. • We show that several well-known divergences are special cases of the Complex Beta divergence. Various information-theoretic divergences have been proposed for the cost function in tasks such as matrix factorization and clustering. One class of divergence is called the Beta divergence. By varying a real-valued parameter β , the Beta divergence connects several well-known divergences, such as the Euclidean distance, Kullback-Leibler divergence, and Itakura-Saito divergence. Unfortunately, the Beta divergence is properly defined only for positive real values, hindering its use for measuring distances between complex-valued data points. We define a new divergence, the Complex Beta divergence, that operates on complex values, and show that it coincides with the standard Beta divergence when the data is restricted to be in phase. Moreover, we show that different values of β place different penalties on errors in magnitude and phase.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.