Abstract

Direct solvers currently dominate commercial finite element structural software, but do not scale well in the fine granularity regime targeted by emerging parallel processors. Substructure based iterative solvers--often called also domain decomposition algorithms--lend themselves better to parallel processing, but must overcome several obstacles before earning their place in general purpose structural analysis programs. One such obstacle is the solution of systems with many or repeated right hand sides. Such systems arise, for example, in multiple load static analyses and in implicit linear dynamics computations. Direct solvers are well-suited for these problems because after the system matrix has been factored, the multiple or repeated solutions can be obtained through relatively inexpensive forward and backward substitutions. On the other hand, iterative solvers in general are ill-suited for these problems because they often must restart from scratch for every different right hand side. In this paper, we present a methodology for extending the range of applications of domain decomposition methods to problems with multiple or repeated right hand sides. Basically, we formulate the overall problem as a series of minimization problems over K-orthogonal and supplementary subspaces, and tailor the preconditioned conjugate gradient algorithm to solve them efficiently. The resulting solution method is scalable, whereas direct factorization schemes and forward and backward substitution algorithms are not. We illustrate the proposed methodology with the solution of static and dynamic structural problems, and highlight its potential to outperform forward and backward substitutions on parallel computers. As an example, we show that for a linear structural dynamics problem with 11640 degrees of freedom, every time-step beyond time-step 15 is solved in a single iteration and consumes 1.0 second on a 32 processor iPSC-860 system; for the same problem and the same parallel processor, a pair of forward/backward substitutions at each step consumes 15.0 seconds.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.