Abstract

We define and study the symmetric version of differential torsion theories. We prove that the symmetric versions of some of the existing results on derivations on right modules of quotients hold for derivations on symmetric modules of quotients. In particular, we prove that the symmetric Lambek, Goldie, and perfect torsion theories are differential. We also study conditions under which a derivation on a right or symmetric module of quotients extends to a right or symmetric module of quotients with respect to a larger torsion theory. Using these results, we study extensions of ring derivations to maximal, total, and perfect right and symmetric rings of quotients.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.