Abstract

The U.S. Food and Drug Administration released proposed lead (Pb) action levels for foods intended for babies and young children in January 2023 based on the agency's interim reference value of 2.2 µg/day for dietary Pb. Since the 1980s, biokinetic models have estimated blood lead levels (BLLs) associated with environmental contamination, but their use in food safety assessment has been limited. We compared three recent biokinetic models (IEUBK Model, ICRP Model Version 5, and AALM) to develop insights on contributors to variability in potential exposures to Pb in consumer baby food products. While modest variation was observed for babies, the predictions trended to convergence for children aged 3 and older, approaching the U.S. FDA dietary conversion factor of 0.16 µg Pb/dL blood per µg Pb intake/day. We applied the IEUBK model in a probabilistic exposure assessment framework characterizing the distribution of Pb in soil, dust, water, and food intake in the United States. Soil and dust were the primary contributors to variance in infant BLLs, while food and water contributed <15% combined. Thus, reductions in upper-bound soil and dust concentrations will be necessary before achieving appreciable reductions in the frequency of BLLs greater than the BLRV of 3.5 µg/dL.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call