Abstract

For a given set of input-output pairs of quantum states or observables, we ask the question whether there exists a physically implementable transformation that maps each of the inputs to the corresponding output. The physical maps on quantum states are trace-preserving completely positive maps, but we also consider variants of these requirements. We generalize the definition of complete positivity to linear maps defined on arbitrary subspaces, then formulate this notion as a semidefinite program, and relate it by duality to approximative extensions of this map. This gives a characterization of the maps which can be approximated arbitrarily well as the restriction of a map that is completely positive on the whole algebra, also yielding the familiar extension theorems on operator spaces. For quantum channel extensions and extensions by probabilistic operations we obtain semidefinite characterizations, and we also elucidate the special case of Abelian inputs or outputs. Finally, revisiting a theorem by Alberti and Uhlmann, we provide simpler and more widely applicable conditions for certain extension problems on qubits, and by using a semidefinite programming formulation we exhibit counterexamples to seemingly reasonable but false generalizations of the Alberti-Uhlmann theorem.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.