Abstract
The Berenger's perfectly matched layer (PML) absorbing boundary condition is applied to terminate a microstrip line with metal strip and multilayer dielectric media extending into the PML regions. In order to handle the inhomogeneous properties of the PML layers better, the integral form of the Maxwell's equations, approximated by central-difference expressions instead of exponential-difference expressions, are utilized to deduce the finite-difference time-domain (FDTD) equations for updating field components inside PML media. The derived formulas are proven to be flexible and convenient for generating and handling the PML layers in a nonuniform FDTD grid. Simulation results show that the proposed multilayer PML boundary condition can effectively absorb the outgoing wave with at least -80-dB reflection coefficient under a complicated boundary situation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE Transactions on Microwave Theory and Techniques
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.