Abstract

Phase reduction methods have been tremendously useful for understanding the dynamics of nonlinear oscillators, but have been difficult to extend to systems with a stable fixed point, such as an excitable system. Using the notion of isostables, which measure the time it takes for a given initial condition in phase space to approach a stable fixed point, we present a general method for isostable reduction for excitable systems. We also devise an adjoint method for calculating infinitesimal isostable response curves, which are analogous to infinitesimal phase response curves for oscillatory systems. Through isostable reduction, we are able to implement sophisticated control strategies in a high-dimensional model of cardiac activity for the termination of alternans, a precursor to cardiac fibrillation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.