Abstract
This paper is aimed to solve non-linear local fractional evolution equations in fluids by extending the operator method proposed by Zenonas Navickas. Firstly, we give the definitions of the generalized operator of local fractional differentiation and the multiplicative local fractional operator. Secondly, some properties of the defined operators are proved. Thirdly, a solution in the form of operator representation of a local fractional ordinary differential equation is obtained by the extended operator method. Finally, with the help of the obtained solution in the form of operator representation and the fractional complex transform, the local fractional Kadomtsev-Petviashvili (KP) equation and the fractional Benjamin-Bona-Mahoney (BBM) equation are solved. It is shown that the extended operator method can be used for solving some other non-linear local fractional evolution equations in fluids.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.