Abstract
A semigroup is said to have the ideal retraction property when each of its ideals is a homomorphic retraction of the whole semigroup. This paper presents a complete characterization of the commutative semigroups that enjoy this property. The fundamental building blocks of these semigroups are the 2-cores and the semilattice of idempotents. Structure for semilattices with the ideal retraction property was discussed in an earlier paper and the structure of the 2-core is described in detail within this paper.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.