Abstract
This paper presents a review of the role played by labeled rooted trees to obtain derivatives for numerical solution of initial value problems in special case \(y' = f(y), y(x_0) = y_0\). We extend a process to find successive derivatives according to monotonically labeled rooted trees, and prove some relevant lemmas and theorems. In this regard, the  derivatives, of the monotonically labeled rooted trees with n vertices are presented by using the monotonically labeled rooted trees with k + n vertices. Eventually, this process is applied to trees without labeling.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Applied Mathematical Research
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.