Abstract
Identifying the parameters that substantially affect the time-dependent reliability is critical for reliability-based design of motion mechanism. The time-dependent local reliability sensitivity and global reliability sensitivity are the two effective techniques for this type of analysis. This work extends the first-passage method and PHI2 method, which are commonly used for estimating the time-dependent reliability, for efficiently estimating the time-dependent local reliability sensitivity and global reliability sensitivity indices of the motion mechanism. Both the local reliability sensitivity and global reliability sensitivity indices are analytically derived based on the Poisson assumption–based first-passage method and the first-order Taylor’s expansion of the motion error function. Compared with the current envelope function method for estimating the time-dependent local reliability sensitivity and global reliability sensitivity indices, the developed method does not need to estimate the second-order derivatives of motion error function, thus is more applicable. The accuracy and effectiveness of the proposed method are demonstrated by a numerical example and a satellite antenna, the direction of which is controlled by a four-bar function generator mechanism.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Proceedings of the Institution of Mechanical Engineers, Part O: Journal of Risk and Reliability
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.