Abstract
There is a recent interest for the verification of monadic programs using proof assistants. This line of research raises the question of the integration of monad transformers, a standard technique to combine monads. In this paper, we extend Monae, a Coq library for monadic equational reasoning, with monad transformers and we explain the benefits of this extension. Our starting point is the existing theory of modular monad transformers, which provides a uniform treatment of operations. Using this theory, we simplify the formalization of models in Monae and we propose an approach to support monadic equational reasoning in the presence of monad transformers. We also use Monae to revisit the lifting theorems of modular monad transformers by providing equational proofs and explaining how to patch a known bug using a non-standard use of Coq that combines impredicative polymorphism and parametricity.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.