Abstract

This study adapts a variety of multi-spectral image classification techniques to generate supervised object detection algorithms for hyperspectral imagery, and compares and quantitatively tests them against the Adaptive Cosine Estimator (ACE) and the standard, matched filter (MF). A new search algorithm, Regularized Maximum Likelihood Clustering (RMLC), uses only pixels for the covariance matrix (CV) computation associated with the object after "regularizing" the matrix to avoid singularities and mitigate statistical degradation due to undersampling for small objects. The searches are applied to both visible/near IR and short wave IR data collected from forested areas. This study tests the detection sensitivity by using object signatures and CVs taken directly from the scene and from temporally transformed signatures and object CVs. This study adds simple, high performing algorithms to the small object search arsenal.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.