Abstract

Conventional silicon-based transistor downscaling is approaching its physical limits, and thus additional novel solutions are urgently desired to address this issue. Herein, we show that 2-D antimonene with heavy effective mass and high density of state (DOS) via strain engineering presents reliable transistor performance with the channel length ( <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">${L}_{\text {ch}}$ </tex-math></inline-formula> ) shrinking below 5 nm. As the biaxial tensile strain increases to 7%, the band switching gives rise to a heavy hole effective mass of <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$12.6{m}_{{0}}$ </tex-math></inline-formula> and a Van Hoff singularity-like DOS. This unique electronic structure can effectively suppress the tunneling current, resulting in steep subthreshold swings (SSs) and ideal ON-current ( <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">${I}_{ \mathrm{ON}}$ </tex-math></inline-formula> ). Especially, as <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">${L}_{\text {ch}}$ </tex-math></inline-formula> downscales to 2.2 nm, the OFF-current can be easily reduced to 0.1 <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$\mu \text{A}/\mu \text{m}$ </tex-math></inline-formula> with SS of 120 mV/dec (310 mV/dec for pristine antimonene) and <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">${I}_{ \mathrm{ON}}$ </tex-math></inline-formula> exceeds 900 <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$\mu \text{A}/\mu \text{m}$ </tex-math></inline-formula> , fulfilling the requirements for high-performance applications. Our results provide new insights on extending the scaling limit in energy-efficient gate-controlled devices.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.