Abstract
AbstractDefects, such as halide interstitials, act as charge recombination centers, induce degradation of halide perovskites, and create major obstacles to applications of these materials. Alkali metal dopants greatly improve perovskite performance. Using ab initio nonadiabatic molecular dynamics, it is demonstrated that alkalis bring favorable effects. The formation energy of halide interstitials increases by up to a factor of four in the presence of alkali dopants, and therefore, defect concentration decreases. When defects are present, alkali metals strongly bind to them. Halide interstitials introduce mid‐gap states that rapidly trap charge carriers. Alkalis eliminate the trap states, helping to maintain high current density. Further to charge trapping, the interstitials accelerate charge recombination. By passivating the interstitials, alkalis make carrier lifetimes up to seven times longer than in defect‐free perovskites and up to thirty times longer than in defective perovskites.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.