Abstract

While the share of bioenergy in the overall energy supply has increased over the last decade, its social acceptance is fragile, mainly due to concerns about negative sustainability impacts. In this paper, we will investigate to what extent the extension of bioenergy towards ‘smart’ or ‘cascaded’ biomass use enhances a project’s social acceptance. Smart use involves the prioritised use of biomass for food and materials. We adopt an explorative single case study approach to investigate issues of social acceptance. Our case is the Biobased Economy Park at Cuijk, in The Netherlands. The central element in this project is the revival of an existing but off-line biopower plant. For the power company involved, the integration of biopower into a broader smart use scheme, involving several new business partners, is a strategy to make the exploitation of the plant profitable again. For the data collection, we used interviews, as well as information provided by members of our expert panel, in addition to information collected from websites and provided at a bioeconomy event. The data was analysed by taking existing conceptual work on the social acceptance of renewable energy innovation as a guide. We found that issues of social acceptance changed rather than diminished when entrepreneurs extended a project’s focus from biopower to smart biomass use. This change can be observed in relation to all three conceptual categories: market acceptance, sociopolitical acceptance and community acceptance. We conclude that the extension from bioenergy towards smart biomass use does not necessarily enhance a project’s social acceptance. Compared to the social acceptance of renewable energy innovation, the social acceptance of smart biomass use is fuzzier, more open to recursive patterns and more dependent upon inter-firm trust. Importantly, embracing the principle of smart biomass use instigates the question of how biomass use can be optimised—either with or without purposes related to energy. We suggest further comparative case study research into the social acceptance dynamics of smart biomass use, for which we identify the following variables as relevant: the type of bioenergy, the sector that takes the initiative, the greenfield character of the project and the complexity of the smart use scheme.

Highlights

  • IntroductionIntroduction to the case We usePark Cuijk as shorthand to refer to our case study. This name is derived from the name of a consortium that was established, called Biobased Economy Park Cuijk, and the notion of a ‘park’ underlines the collective willingness and physical proximity of partners involved in creating one of the first small, modern facilities for the bioeconomy

  • Introduction to the case We usePark Cuijk as shorthand to refer to our case study

  • We conclude that the extension from bioenergy towards smart biomass use does not necessarily enhance a project’s social acceptance

Read more

Summary

Introduction

Introduction to the case We usePark Cuijk as shorthand to refer to our case study. This name is derived from the name of a consortium that was established, called Biobased Economy Park Cuijk, and the notion of a ‘park’ underlines the collective willingness and physical proximity of partners involved in creating one of the first small, modern facilities for the bioeconomy. According to The Organisation for Economic Co-operation and Development (OECD), ‘[t]he bioeconomy in 2030 is likely to involve three elements: advanced knowledge of genes and complex cell processes, renewable biomass, and the integration of biotechnology applications across sectors’ [30]. ‘A smart use of biomass should be based on sustainability, affordability and added value Under this principle, biomass should be first used for food, for high value added products (including re-use and recycling) and afterwards as a source for bioenergy and biofuels.’ [16]. Several European Parliament committees have stated that they support this approach Such an ‘integrated valorisation’ (cf [3]) of biomass gives priority to produce products with the highest economic value, which coincides with a small biomass demand, which, in turn, is expected to cause only limited negative impacts on the environment and society

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call