Abstract

The Aquarius numeric processor (ANP) is an extended numeric instruction set architecture that is based on the Berkeley programmed logic machine (PLM) and supports integrated symbolic and numeric calculations. This extension expands the existing numeric data type to include 32- and 64-bit integers and single- and double-precision floating-point numbers conforming to the IEEE Standard P754. A class of data structure called numeric arrays has been added to represent matrices and arrays found in most scientific programming languages. Powerful numeric instructions are included to manipulate these novel data types. The authors describe the programming model and the architecture of the ANP. An experimental ANP is currently under construction using TTL (transistor-transistor logic) and ECL (emitter-coupled logic) parts. Simulated performance results indicate that the system will achieve about 10 MFLOPs (millions of floating-point operations) on the Prolog version of some Whetstone and Linpack benchmarks and close to 20 MFLOPS on some matrix operations (all in double precision). >

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.