Abstract
The Lucas–Kanade tracker (LKT) is a commonly used method to track target objects over 2D images. The key principle behind the object tracking of an LKT is to warp the object appearance so as to minimize the difference between the warped object’s appearance and a pre-stored template. Accordingly, the 2D pose of the tracked object in terms of translation, rotation, and scaling can be recovered from the warping. To extend the LKT for 3D pose estimation, a model-based 3D LKT assumes a 3D geometric model for the target object in the 3D space and tries to infer the 3D object motion by minimizing the difference between the projected 2D image of the 3D object and the pre-stored 2D image template. In this paper, we propose an extended model-based 3D LKT for estimating 3D head poses by tracking human heads on video sequences. In contrast to the original model-based 3D LKT, which uses a template with each pixel represented by a single intensity value, the proposed model-based 3D LKT exploits an adaptive template with each template pixel modeled by a continuously updated Gaussian distribution during head tracking. This probabilistic template modeling improves the tracker’s ability to handle temporal fluctuation of pixels caused by continuous environmental changes such as varying illumination and dynamic backgrounds. Due to the new probabilistic template modeling, we reformulate the head pose estimation as a maximum likelihood estimation problem, rather than the original difference minimization procedure. Based on the new formulation, an algorithm to estimate the best head pose is derived. The experimental results show that the proposed extended model-based 3D LKT achieves higher accuracy and reliability than the conventional one does. Particularly, the proposed LKT is very effective in handling varying illumination, which cannot be well handled in the original LKT.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.