Abstract
A new extended-release buprenorphine (XR), an FDA-indexed analgesic, has recently become available to the laboratory animal community. However, the effectiveness and dosing of XR has not been extensively evaluated for rats. We investigated XR's effectiveness in attenuating postoperative hypersensitivity in a rat incisional pain model. We hypothesized that high dose of XR would attenuate mechanical and thermal hypersensitivity more effectively than the low dose of XR in this model. We performed 2 experiments. In experiment 1, male adult Sprague-Dawley rats (n = 31) were randomly assigned to 1 of the 4 treatment groups: 1) saline (saline, 0.9% NaCl, 5 mL/kg, SC, once); 2) sustained-release buprenorphine (Bup-SR; 1.2 mg/kg, SC, once), 3) low-dose extended-release buprenorphine (XR-Lo; 0.65 mg/kg, SC, once), and 4) high-dose extended-release buprenorphine (XR-Hi; 1.3 mg/kg, SC, once). After drug administration, a 1 cm skin incision was made on the plantar hind paw under anesthesia. Mechanical and thermal hypersensitivity were evaluated 1 d before surgery (D-1), 4 h after surgery (D0), and for 3 d after surgery (D1, D2, and D3). In experiment 2, plasma buprenorphine concentration (n = 39) was measured at D0, D1, D2, and D3. Clinical observations were recorded daily, and a gross necropsy was performed on D3. Mechanical and thermal hypersensitivity were measured for 3 d (D0-D3) in the saline group. Bup-SR, XR-Lo, and XR-Hi effectively attenuated mechanical hypersensitivity for D0-D3. Plasma buprenorphine concentrations remained above 1 ng/mL on D0 and D1 in all treatment groups. No abnormal clinical signs were noted, but injection site reactions were evident in the Bup-SR (71%), XR-Lo (75%), and XR-Hi (87%) groups. This study indicates that XR-Hi did not attenuate hypersensitivity more effectively than did XR-Lo in this model. XR 0.65 mg/kg is recommended to attenuate postoperative mechanical hypersensitivity for up to 72 h in rats in an incisional pain model.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of the American Association for Laboratory Animal Science
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.