Abstract

In this work, we present an extended-gate metal oxide semiconductor field effect transistor (MOSFET)-based biosensor for the detection of deoxynivalenol using a null-balancing circuit. An extended-gate MOSFET-based biosensor was fabricated by a standard complementary metal oxide semiconductor (CMOS) process and its characteristics were measured. A null-balancing circuit was used to measure the output voltage of the sensor directly, instead of measuring the drain current of the sensor. Au was used as the gate metal, which has a chemical affinity with thiol, which leads to the immobilization of a self-assembled monolayer (SAM) of mercaptohexadecanoic acid (MHDA). The SAM was used to immobilize the anti-deoxynivalenol antibody. The carboxyl group of the SAM was bound to the anti-deoxynivalenol antibody. The anti-deoxynivalenol antibody and deoxynivalenol were bound by their antigen-antibody reaction. The measurements were performed in phosphate buffered saline (PBS; pH 7.4) solution. A standard Ag/AgCl electrode was employed as a reference electrode. The bindings of a SAM, anti-deoxynivalenol antibody, and deoxynivalenol caused a variation in the output voltage of the extended-gate MOSFET-based biosensor. Surface plasmon resonance (SPR) measurement was performed to verify the interaction among the SAM, deoxynivalenol-antibody, and deoxynivalenol.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call