Abstract

Extended mild-slope (MS) and wave-action equations (WAEs) are derived by taking into account high-order derivatives of the bottom profile and the depth-averaged current that were previously neglected. As a first step for this derivation, a time-dependent MS-type equation in the presence of ambient currents that consists of these high-order components is constructed. This mild-slope equation is used as a basis to form a wave-action balance equation that retains high-order refraction and diffraction terms of varying depths and currents. The derivation accurately accounts for the effects of the currents on the Doppler shift. This results in an ‘effective’ intrinsic frequency and wavenumber that differ from the ones of wave ray theory. Finally, the new WAE is derived for the phase-averaged frequency-direction spectrum in order to allow its use in stochastic wave-forecasting models.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.