Abstract
Herpes simplex virus type 1 thymidine kinase (HSV1-TK) has become increasingly important as a target in medicinal chemistry because of its links to therapy of viral infection, gene therapy of cancer and allogeneic transplantation. These applications are based on the differences in binding properties between the human and the viral enzyme. Several problems have been encountered in the clinic, e.g. the increase of resistance for antiviral drugs and the immunosuppressive effects of the dosages needed for tumor regression. Thus intensive efforts have been directed towards understanding substrate diversity to overcome the clinical limitations. In this context, kinetic and thermodynamic studies revealed that substrates bind in compulsory order and that the binding event is enthalpy driven. The structural evaluation of aciclovir resistant HSV strains shows that loss of electrostatic interactions, change in steric accessibility and modification of the 3D conformation of HSV1-TK are responsible for the encountered resistance. Further crystallography studies revealed the role of water in substrate binding, the advantage of a fixed ribose ring and that substrate acceptance of HSV1-TK is extended to all five nucleobases. The reviewed results give new rationale for the design of novel prodrugs and engineered HSV1-TK for antiviral and gene therapy.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.