Abstract

Here we report new sedimentological and paleontological data from a 603.5 m thick Neogene sequence (Woma section) in the Gyirong Basin, a basin induced by east–west extension in the Himalayas of southern Tibet. We document the conglomeratic Danzengzhukang Formation, at the base of the section, and the overlying finer grained Woma Formation that includes a Hipparion fauna. Based on stratigraphic correlations and earlier thermochronology and magnetostratigraphic results, we bracket the depositional age of this section between 10.8 Ma and 1.7 Ma. Lithology, paleo-current directions and provenance analysis, together with palynological and paleontological data, have revealed three depositional environments for the deposition of the studied section. (1) Alluvial-fan to braided river environments with ESE transport directions (Danzengzhukang Formation, <10.8 to ∼7.2 Ma) were associated with a warm and humid coniferous- and broad-leaved mixed forest. (2) Lacustrine dominated conditions (Lower Woma Formation, ∼7.2 to 3.2 Ma) with WSW transport directions were associated with locally warm and humid environments in the low-lying areas while input from a new source area suggests the presence of a high-altitude, cold and arid deciduous coniferous-leaved forests. (3) A fan delta dominated environment (Upper Woma Formation, 3.2 to >1.7 Ma) with increased denudation and WSW paleo-currents was associated with a deciduous coniferous and broad-leaved mixed forest that suggests an increase in climate variability. Our data indicate that the Gyirong Basin was under overall warm and humid conditions throughout most of its history, in agreement with high-resolution oxygen and carbon isotope data collected from the same section (this issue). We interpret our warm climate in the Gyirong Basin to reflect the prevalence of the monsoonal influence and the distal pollen sources to result from orographic effects.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.