Abstract
Owing to the Auger recombination effect, multiple excitons (MEs) in semiconductor nanocrystals (NCs) are dissipated nonradiatively at the sub-nanosecond time scale, which sets a stringent limit on the time window within which one can operate with them. Here, we show that this issue can be resolved by utilizing an intrinsic energy transfer system in CdSe NCs, where MEs created in the donor quantized states can be effectively extracted to the acceptor trap states. This was evidenced by the step-like increase in the intensity and the apparent decrease in the rise time of the trap-state photoluminescence with the elevated laser excitation power. With the radiative lifetime being tens of nanoseconds for the trap states, extended storage of MEs has been achieved and marks a crucial step towards flexible manipulations of their optoelectronic properties.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.