Abstract
A new extended state space recursive least squares (ESSRLS) algorithm is proposed for state estimation of nonlinear systems. It is based on state space recursive least squares (SSRLS) approach and uses first order linearization of the system. It inherits the capability of obtaining state estimate without knowledge of process and measurement noise covariance matrices (Q and R respectively). The proposed approach is considered to provide new design option for scenarios where noise statistics and system dynamics vary. ESSRLS is initialized using delayed recursion method and a forgetting factor λ is employed to optimize the performance. The selection of λ can be problem specific as shown through experimental validations. However a value closer to and less than unity is generally recommended. Theoretical bases are validated by applying this algorithm to problems of tracking a non-conservative oscillator, a damped system with amplitude death and a signal modeled by mixture of Gaussian kernels. Simulation results show an MSE performance gain of 20 dB and 23 dB over extended Kalman filter (EKF) and unscented Kalman filter (UKF) while tracking van der Pol oscillator without knowledge about noise variances. The computational complexity of ESSRLS falls within that of EKF and UKF.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.