Abstract

ABSTRACTIn this paper, a novel fault-tolerant attitude tracking control is proposed for a rigid spacecraft with uncertain inertia matrix, actuator faults, actuator misalignment and external disturbances. The uncertainty of the inertial matrix is caused by the rotation of solar panels, payload movement and fuel consumption, and actuator faults, which include partially failed and completely failed actuators. A novel extended state observer is proposed to estimate the total uncertainties and a fast nonsingular terminal sliding-mode control scheme is proposed to get a faster, higher control precision. Strict finite-time convergence and the concrete convergence time are given. Finally, all the states of the closed-loop system are guaranteed to converge to the corresponding region in a finite time by choosing appropriate parameters. Simulation and comparison results further show the effectiveness and advantages of this method.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.