Abstract
Large-slenderness-ratio (LSR) aircraft exhibit more severe lateral–directional coupling compared with other aircraft, which poses a significant challenge to their flight safety, especially during high-speed maneuvers. Reliable attitude decoupling control is, therefore, essential for LSR aircraft. In this study, a novel control framework that combines incremental nonlinear dynamic inversion (INDI) and extended state observer (ESO) is proposed for supersonic roll maneuver control of LSR aircraft. The ESO is used to estimate the angular acceleration on the basis of an onboard mathematical model. The acceleration estimator based on ESO achieves superior noise reduction compared with the complementary filter (CF) and reduces the onboard model requirement without significantly sacrificing estimation accuracy. Monte Carlo (MC) simulations and frequency–domain analysis demonstrate the effectiveness and robustness of the proposed controller. The sensitivity of parameter uncertainties is also investigated, revealing that the natural frequency of the actuator is the most critical parameter affecting robustness. Finally, flight tests validate the effectiveness of the proposed control structure.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.