Abstract

In this article, an event-driven output feedback control approach is proposed for discrete-time systems with unknown mismatched disturbances. To estimate the unavailable states and disturbances, a reduced-order extended state functional observer is proposed, and by introducing an event-driven scheduler, the ZOH-based event-driven output feedback disturbance rejection controller is designed, and the stability and disturbance rejection analyses are performed. To further save the network resources, the predictive event-driven output feedback disturbance rejection control approach is proposed, and the stability and disturbance rejection analyses of the systems with predictive control are also conducted. It can be shown that the disturbances are compensated completely in output channels of the systems, and compared with the time-driven control schemes. And event-triggering frequency is greatly reduced with the proposed event-driven control methods. Finally, the effectiveness of the provided control approaches is demonstrated by numerical simulations.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.