Abstract

With extended-spectrum β-lactamases (ESBLs) and CTX-M enzymes being on the rise, antimicrobial treatment of enterobacterial infections is becoming more and more challenging. Our study aimed at a molecular characterization of phenotypically ESBL-positive E. coli strains obtained from blood cultures of patients of the University Hospital of Leipzig (UKL), Germany. The presence of CMY-2, CTX-M-14 and CTX-M-15 was investigated using Streck ARM-D Kit (Streck, USA). Real-time amplifications were performed by QIAGEN Rotor-Gene Q MDx Thermocycler (QIAGEN, Thermo Fisher Scientific, USA). Antibiograms as well as epidemiological data were evaluated. Among 117 cases, 74.4% of the isolates showed a resistance to ciprofloxacin, piperacillin and ceftazidime or cefotaxime while being susceptible to imipenem/meropenem. The proportion of ciprofloxacin resistance was significantly higher than the proportion of ciprofloxacin susceptibility. At least one of the investigated genes was detected in 93.1% of the blood culture E. coli isolates: CTX-M-15 (66.7%), CTX-M-14 (25.6%) or the plasmid-mediated ampC gene CMY-2 (3.4%). 2.6% were tested positive for two resistance genes. 94 of the corresponding stool specimens tested positive for ESBL producing E. coli (94/112, 83.9%). 79 (79/94, 84%) E. coli strains found in the stool samples matched with the respective patient’s blood culture isolate phenotypically (MALDI-TOF, antibiogram). The distribution of resistance genes was in accordance with recent studies in Germany as well as worldwide. This study provides indications of an endogenous focus of infection and emphasize the importance of screening programs for high-risk patients.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call