Abstract

BackgroundExtended Spectrum Beta- Lactamase producing organisms causing urinary tract infections (ESBL-UTI) are increasing in incidence and pose a major burden to health care. While ESBL producing Klebsiella species seem to account for most nosocomial outbreaks, ESBL-producing E. coli have been isolated from both hospitalized and non-hospitalized patients. Although 95-100% ESBL organisms are still considered sensitive to meropenem, rapid emergence of carbapenem resistance has been documented in many countries. The objective of this study was to evaluate urinary tract infections caused by ESBL producers and the antibiotic susceptibility patterns in Sri Lanka.MethodsPatients with confirmed ESBL-UTI admitted to Professorial Medical Unit, Colombo North Teaching Hospital from January – June 2015 were recruited to the study. Their urine culture and antibiotic susceptibility reports were evaluated after obtaining informed written consent.ResultsOf 61 culture positive ESBL-UTIs, E. coli caused 53 (86.8%), followed by Klebsiella in 8 (13.1%).30 (49.1%) had a history of hospitalization within the past three months and included 6/8(75%) of Klebsiella UTI and 24/53(45.2%) of E.coli UTI. Antibiotic susceptibility of ESBL organisms were; Meropenem 58 (95%), Imipenem 45 (73.7%), Amikacin 37 (60.6%) and Nitrofurantoin 28(45.9%). In 3(4.9%), E.coli were resistant to Meropenem. These three patients had received multiple antibiotics including meropenem in the recent past for recurrent UTI.ConclusionsWe observed a higher percentage of E. coli over Klebsiella as ESBL producing organisms suggesting most ESBL-UTIs to be community acquired, Carbapenems seem to remain as the first line therapy for majority of ESBL-UTIs in the local setting. However 4.9% prevalence of meropenem resistance is alarming compared to other countries.Although prior antibiotic utilization and hospitalization may contribute to emergence of ESBL producing Klebsiella and E.coli in Sri Lanka, high prevalence of community acquired ESBL-E. coli needs further investigations to identify potential causes . Being a third world country with a free health care system, observed alarming rate of carbapenem resistance is likely to add a significant burden to health budget. We feel that treatment of infections in general needs a careful approach adhering to recommended antibiotic guidelines in order to prevent emergence of multi drug resistant organisms.

Highlights

  • Extended Spectrum Beta- Lactamase producing organisms causing urinary tract infections (ESBL-UTI) are increasing in incidence and pose a major burden to health care

  • Infections caused by extended spectrum beta-lactamase (ESBL)-producing organisms are rising in epidemic proportions and poses a threat and a challenge to clinical practice around the World [1]

  • While ESBLs are generally derived from TEM and SHV-type enzymes, CTX –M type enzyme isolated from ESBL producers had been recognized as an important subtype leading to multi drug resistance [4]

Read more

Summary

Introduction

Extended Spectrum Beta- Lactamase producing organisms causing urinary tract infections (ESBL-UTI) are increasing in incidence and pose a major burden to health care. While ESBL producing Klebsiella species seem to account for most nosocomial outbreaks, ESBL-producing E. coli have been isolated from both hospitalized and non-hospitalized patients. The objective of this study was to evaluate urinary tract infections caused by ESBL producers and the antibiotic susceptibility patterns in Sri Lanka. Infections caused by extended spectrum beta-lactamase (ESBL)-producing organisms are rising in epidemic proportions and poses a threat and a challenge to clinical practice around the World [1]. The exact global prevalence of ESBL producing organisms is not known, certain studies in the Indian subcontinent have found nearly 50% prevalence [2, 3]. ESBLs are commonly produced by E. coli and Klebsiella species [1]. The selection of antibacterials against ESBL organisms in clinical practice is often complicated

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call