Abstract

There is an increasing need for silicon-compatible high-bandwidth extended-short wave infrared (e-SWIR) photodetectors (PDs) to implement cost-effective and scalable optoelectronic devices. These systems are quintessential to address several technological bottlenecks in detection and ranging, surveillance, ultrafast spectroscopy, and imaging. In fact, current e-SWIR high-bandwidth PDs are predominantly made of III–V compound semiconductors and thus are costly and suffer a limited integration on silicon besides a low responsivity at wavelengths exceeding 2.3 μm. To circumvent these challenges, Ge1−xSnx semiconductors have been proposed as building blocks for silicon-integrated high-speed e-SWIR devices. Herein, this study demonstrates vertical all-GeSn PIN PDs consisting of p-Ge0.92Sn0.08/i-Ge0.91Sn0.09/n-Ge0.89Sn0.11 and p-Ge0.91Sn0.09/i-Ge0.88Sn0.12/n-Ge0.87Sn0.13 heterostructures grown on silicon following a step-graded temperature-controlled epitaxy protocol. The performance of these PDs was investigated as a function of the device diameter in the 10–30 μm range. The developed PD devices yield a high bandwidth of 12.4 GHz at a bias of 5 V for a device diameter of 10 μm. Moreover, these devices show a high responsivity of 0.24 A/W, a low noise, and a 2.8 μm cutoff wavelength, thus covering the whole e-SWIR range.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call