Abstract
It is shown that a lack of isotropy narrows the range of spatial scales where turbulent flows exhibit extended self-similarity (ESS), namely, self-scaling of velocity structure functions. This effect holds irrespectively of the order of the structure functions and explains why early experiments on turbulent boundary layers failed to observe ESS. The shrinking of the ESS range of scales is well captured by the approximate analytical scaling functions developed by Sreenivasan and co-workers [Phys. Rev. E 48, R33 (1993); 48, 5 (1993); 48, R3217 (1993)] to fit atmospheric boundary layer data.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.