Abstract
Abstract The Sawyer–Eliassen (S–E) equation for frontal circulations forced by a geostrophic stretching deformation is extended to include the effects of both negative moist potential vorticity (MPV) and eddy viscosity. Since the moist (precipitation) region depends on the vertical motion and thus needs to be solved together with the frontal circulation, the extended S–E equation is a nonlinear, elliptic, partial differential equation of sixth order. When MPV is positive and viscosity is negligible, this equation degenerates into the conventional S–E equation. The existence, uniqueness and stability of the solutions of the extended S–E equation in the presence of negative MPV (but still stable to viscous moist symmetric perturbations) are examined both analytically and numerically.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.