Abstract

Predicted mean vote (PMV) is a prevailing thermal comfort model adopted by thermal comfort standards. To extend its ability in explaining thermal adaptations, the PMV is multiplied by an extension factor. However, the original extended PMV (ePMV) cannot account for thermal adaptations around thermal neutrality, resulting in deviation around thermal neutrality, therefore, is unable to predict thermal sensation around thermal neutrality accurately. Given the unusual importance of thermal sensation around thermal neutrality for energy-efficient provision of indoor thermal comfort, this study modifies the ePMV to reinforce thermal adaptations around thermal neutrality by adding a thermal neutrality factor. The modified ePMV is quantified by explicitly expressing the extension factor and the thermal neutrality factor as functions of field datasets of the PMV, thermal sensation vote (TSV), and ambient temperature. The modified ePMV is validated to improve thermal sensation prediction effectively (by up to 73%), particularly for prediction around thermal neutrality with the TSV between -0.5 and 0.5, by mitigating deviation around thermal neutrality for different types of buildings under various climate conditions around the world. Moreover, the modified ePMV is explicitly formulated and, therefore, convenient for practical applications.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call