Abstract

First-generation n-i-GeSn/p-Si(100) photodiode detectors with Ge0.98Sn0.02 active layers were fabricated under complementary metal oxide semiconductor compatible conditions. It is found that, even at this low Sn concentration, the detector quantum efficiencies are higher than those in comparable pure-Ge device designs processed at low temperature. Most significantly, the spectral range of the GeSn device responsivity is dramatically increased—to at least 1750 nm—well beyond the direct band gap of Ge (1550 nm). This allows coverage of all telecommunication bands using entirely group IV materials.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.