Abstract

Based on the extended optical model approach in which the polarization potential is decomposed into direct reaction (DR) and fusion parts, simultaneous ${\ensuremath{\chi}}^{2}$ analyses are performed for elastic scattering and fusion cross section data for the $^{6}\mathrm{Li}+^{208}\mathrm{Pb}$ system at near-Coulomb-barrier energies. A folding potential is used as the bare potential. It is found that the real part of the resultant DR part of the polarization potential is repulsive, which is consistent with the results from the continuum discretized coupled channel (CDCC) calculations and the normalization factors needed for the folding potentials. Further, it is found that both DR and fusion parts of the polarization potential satisfy separately the dispersion relation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.