Abstract
A class of one-step finite difference formulae for the numerical solution of first-order differential equations is considered. The accuracy and stability properties of these methods are investigated. By judicious choice of the coefficients in these formulae a method is derived which is both A-stable and third-order convergent. Moreover the new method is shown to be L-stable and so is appropriate for the solution of certain stiff equations. Numerical results are presented for several test problems.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.