Abstract

This paper proposes an extended nonlinear chirp scaling (CS) image formation algorithm for the bistatic synthetic aperture radar systems with the squinted transmitter and a fixed receiver. Since the transmitter with the squint mode was adopted in the system, two main problems, i.e., the spatial variance of the frequency-modulation rate and cubic phase terms, were introduced in the image formation algorithm. The former problem was solved by the linearity approximation of parameter <formula formulatype="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"><tex Notation="TeX">$p$</tex></formula> and deduced <formula formulatype="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"><tex Notation="TeX">$q$</tex></formula> (the second- and third-order coefficients of CS factors in range, which could be used to remove the spatial variation and high-order phase in the range direction) along the range domain while the latter one was compensated by a cubic analytical phase term in the frequency domain. A corresponding experimental hardware system and the bistatic experiments were also described in this paper. Both the simulation and experimental results validated the proposed algorithm.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.