Abstract
Conventional neoclassical transport theory is extended to include the effects of orbit squeezing, and to allow the effective poloidal Mach number UpM=[(V∥/vt)+(VEB/vtBp)] of the order of unity for incompressible tokamak plasmas. Here, V∥ is the parallel mass flow, vt is the ion thermal speed, VE is the poloidal E×B drift speed, B is the magnetic field strength, and Bp is the poloidal magnetic field strength. It is found that ion thermal conductivity is reduced from its conventional neoclassical value in both banana and plateau regimes if UpM>1 and S>1. Here, S=[1+cI2Φ′′/(Ω0B0)] is the orbit squeezing factor with c the speed of light, I=RBt, R the major radius, Φ the electrostatic potential, B0 the magnetic field strength on the axis, Ω0=eB0/Mc, M the ion mass, e the ion charge, Φ′′=d2Φ/dψ2, and ψ the poloidal flux function. However, there is an irreducible minimum for the ion thermal conductivity in the banana-plateau regime set by the conventional Pfirsch–Schlüter transport.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.