Abstract

An extended multiscale finite element method is developed for small-deformation elasto-plastic analysis of periodic truss materials. The base functions constructed numerically are employed to establish the relationship between the macroscopic displacement and the microscopic stress and strain. The unbalanced nodal forces in the micro-scale of unit cells are treated as the combined effects of macroscopic equivalent forces and microscopic perturbed forces, in which macroscopic equivalent forces are used to solve the macroscopic displacement field and microscopic perturbed forces are used to obtain the stress and strain in the micro-scale to make sure the correctness of the results obtained by the downscale computation in the elastic-plastic problems. Numerical examples are carried out and the results verify the validity and efficiency of the developed method by comparing it with the conventional finite element method.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.