Abstract

Stroke remains a leading global cause of death and disability. In the last decade, the therapeutic window for mechanical thrombectomy has increased from a maximum of 6 to 24h and beyond. While endovascular advancements have improved rates of recanalization, no post-stroke pharmacotherapeutics have been effective in enhancing neurorepair and recovery. New experimental models are needed to closer mimic the human patient. Our group has developed a model of transient 5-h occlusion in rats to mimic stroke patients undergoing thrombectomy. Our procedure was designed specifically in aged rats and was optimized based on sex in order to keep mortality and extent of injury consistent between aged male and female rats. This model uses a neurological assessment modeled after the NIH Stroke Scale. Finally, the potential for translation between our rat model of stroke and humans was assessed using comparative gene expression for key inflammatory genes. This model will be useful in the evaluation of therapeutic targets to develop adjuvant treatments for large vessel occlusion during the thrombectomy procedure.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.