Abstract

Rice cultivation is a major source of methane (CH4) emissions. Intermittent irrigation systems in rice cultivation, such as the mid-season drainage (MSD), are effective strategies to mitigate CH4 emissions during the growing season, though the reduction rates are variable and dependent on the crop context. Aeration periods induce alteration of soil CH4 dynamics that can be prolonged after flooding recovery. However, whether these changes persist beyond the growing season remains underexplored. A field experiment was conducted in Spain to study the effect of MSD implemented during the rice growing season on greenhouse gas (GHG) emissions in relation to the standard permanently flooded water management (PFL). Specifically, the study aimed at (1) assessing the CH4 mitigation capacity of MSD in the studied area and (2) testing the hypothesis that the mitigating effect of MSD can be extended into the following winter flooded fallow season. Year-round GHG sampling was conducted, seasonal and annual cumulative emissions of CH4 and N2O as well as the global warming potential were calculated, and grain yield was measured. MSD reduced growing season CH4 emissions by ca. 80% without yield penalties. During the flooded fallow season, MSD reduced CH4 emissions by ca. 60%, despite both fields being permanently flooded. The novelty of our observations lies in the amplified mitigation capacity of MSD by extending the CH4 mitigation effect to the following flooded winter fallow season. This finding becomes especially relevant in rice systems with flooded winter fallow season given the large contribution of this season to the annual CH4 emissions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.