Abstract

Quantifying cell generated mechanical forces is key to furthering our understanding of mechanobiology. Traction force microscopy (TFM) is one of the most broadly applied force probing technologies, but its sensitivity is strictly dependent on the spatio-temporal resolution of the underlying imaging system. In previous works, it was demonstrated that increased sampling densities of cell derived forces permitted by super-resolution fluorescence imaging enhanced the sensitivity of the TFM method. However, these recent advances to TFM based on super-resolution techniques were limited to slow acquisition speeds and high illumination powers. Here, we present three novel TFM approaches that, in combination with total internal reflection, structured illumination microscopy and astigmatism, improve the spatial and temporal performance in either two-dimensional or three-dimensional mechanical force quantification, while maintaining low illumination powers. These three techniques can be straightforwardly implemented on a single optical set-up offering a powerful platform to provide new insights into the physiological force generation in a wide range of biological studies. This article is part of the Theo Murphy meeting issue 'Super-resolution structured illumination microscopy (part 1)'.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.