Abstract
In this paper, the linear empirical Bayes estimation method, which is based on approximation of the Bayes estimator by a linear function, is generalized to an extended linear empirical Bayes estimation technique which represents the Bayes estimator by a series of algebraic polynomials. The extended linear empirical Bayes estimators are elaborated in the case of a location or a scale parameter. The theory is illustrated by examples of its application to the normal distribution with a location parameter and the gamma distribution with a scale parameter. The linear and the extended linear empirical Bayes estimators are constructed in these two cases and, then, studied numerically via Monte Carlo simulations. The simulations show that the extended linear empirical Bayes estimators have better convergence rates than the traditional linear empirical Bayes estimators.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.