Abstract

To quantify the fate of respiratory droplets under different ambient relative humidities, direct numerical simulations of a typical respiratory event are performed. We found that, because small droplets (with initial diameter of 10 μm) are swept by turbulent eddies in the expelled humid puff, their lifetime gets extended by a factor of more than 30 times as compared to what is suggested by the classical picture by Wells, for 50% relative humidity. With increasing ambient relative humidity the extension of the lifetimes of the small droplets further increases and goes up to around 150 times for 90% relative humidity, implying more than 2m advection range of the respiratory droplets within 1sec. Employing Lagrangian statistics, we demonstrate that the turbulent humid respiratory puff engulfs the small droplets, leading to many orders of magnitude increase in their lifetimes, implying that they can be transported much further during the respiratory events than the large ones. Our findings provide the starting points for larger parameter studies and may be instructive for developing strategies on optimizing ventilation and indoor humidity control. Such strategies are key in mitigating the COVID-19 pandemic in the present autumn and upcoming winter.

Highlights

  • To quantify the fate of respiratory droplets under different ambient relative humidities, direct numerical simulations of a typical respiratory event are performed

  • Because small droplets are swept by turbulent eddies in the expelled humid puff, their lifetime gets extended by a factor of more than 30 times as compared to what is suggested by the classical picture by Wells, for 50% relative humidity

  • Employing Lagrangian statistics, we demonstrate that the turbulent humid respiratory puff engulfs the small droplets, leading to many orders of magnitude increase in their lifetimes, implying that they can be transported much further during the respiratory events than the large ones

Read more

Summary

Introduction

To quantify the fate of respiratory droplets under different ambient relative humidities, direct numerical simulations of a typical respiratory event are performed.

Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.