Abstract
Under a semiparametric regression model, a family of robust estimates for the regression parameter is proposed. The least trimmed squares (LTS) method is a statistical technique for fitting a regression model to a set of points. Given a set of n observations and the integer trimming parameter , the LTS estimator involves computing the hyperplane that minimizes the sum of the smallest h squared residuals. The LTS estimator is closely related to the well-known least median squares (LMS) estimator in which the objective is to minimize the median squared residual. Although LTS estimator has the advantage of being statistically more efficient than LMS estimator, the computational complexity of LTS is less understood than LMS. Here, we develop an algorithm for the LTS estimator. Through a Monte Carlo approach, performance of the robust estimates is compared with the classical ones in semiparametric regression models.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.