Abstract

We develop an extended Kalman filter-based vehicle tracking algorithm, specifically designed for uniform planar array layouts and vehicle platoon scenarios. We first propose an antenna placement strategy to design the optimal antenna array configuration for precise vehicle tracking in vehicle-to-infrastructure networks. Furthermore, a vehicle tracking algorithm is proposed to improve the position estimation performance by specifically considering the characteristics of the state evolution model for vehicles in the platoon. The proposed algorithm enables the sharing of corrected error transition vectors among platoon vehicles, for the purpose of enhancing the tracking performance for vehicles in unfavorable positions. Lastly, we propose an array partitioning algorithm that effectively divides the entire antenna array into sub-arrays for vehicles in the platoon, aiming to maximize the average tracking performance. Numerical studies verify that the proposed tracking and array partitioning algorithms improve the position estimation performance.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call