Abstract

The gist of extended irreversible thermodynamics and generalized hydrodynamics is presented within the context of rheology of complex molecules (e.g., polymers) in this paper. Then, the constitutive equation for stress developed for polyatomic fluids in a previous paper is applied to rheology of polymeric fluids. This constitutive equation is fully consistent with the thermodynamic laws. It is shown that the collision bracket integrals appearing in the constitutive equation can be recast in terms of friction tensors of beads and equilibrium force-force correlation functions if the momentum relaxation is much faster than the configuration relaxation and there exist such relaxation times. The force-force correlation functions reduce to those related to the mean square radius of gyration of the polymer if the Hookean model is taken for forces. By treating the recast collision bracket integrals in the constitutive equation as empirical parameters, we analyze some experimental data on shear rate and elongation rate dependence of polymeric melts and obtain excellent agreement with experiment. We show that the empirical parameters can be related to the zero shear rate viscosity and the ratio of the secondary to the primary normal stress coefficient. Therefore, for the plane Couette flow geometry considered in the paper, the constitutive equation is completely specified by the limiting material functions at zero shear rate and relaxation times.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.