Abstract

A hydrodynamical model based on the theory of extended thermodynamics is presented for carrier transport in semiconductors. Closure relations for fluxes are obtained by employing the maximum entropy principle. The production terms are modeled by fitting the Monte Carlo data for homogeneously doped semiconductors. The mathematical properties of the model are studied. A suitable numerical method, which is a generalization of the Nessyahu--Tadmor scheme to the nonhomogeneous case, is provided. The validity of the constitutive relations has been assessed by comparing the numerical results with detailed Monte Carlo simulations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.